
SIEVE METHODS IN GROUP THEORY I:
POWERS IN LINEAR GROUPS

ALEXANDER LUBOTZKY AND CHEN MEIRI

Abstract. A general sieve method for groups is formulated. It enables one to
“measure” subsets of a finitely generated group. As an application we show that
if Γ is a finitely generated non virtually-solvable linear group of characteristic zero
then the set of proper powers in Γ is exponentially small. This is a far reaching
strengthening of the main result of [HKLS].

1. introduction

The sieve method is a classic one in number theory (see, for example, [FI]). Re-
cently it found some applications in non-commutative setting. On the one hand,
Bourgain-Gumburd-Sarnak [BGS1] applied it in studying almost-prime vectors in
orbits of non-commutative groups acting on Zn. On the other hand, Rivin [Ri] and
Kowalski [Ko] used it to study generic properties of elements in the mapping class
group and arithmetic groups. Our formulation of the sieve method generalizes and
simplifies the second one and usually falls under the name ‘Large Sieve’. The goal
of this introduction is to state the general large sieve setting with respect to group
theory and to serve as a guideline for the proof of Theorem A below. We start by
describing the algebraic problem and its background. After that, we explain how
random walks and sieve methods are used in its solution.

A virtually nilpotent group is a group which contains a nilpotent subgroup of finite
index. Mal’cev proved:

Theorem 1.1 (Mal’cev [Mal]). Let Γ be a finitely generated virtually nilpotent group.
Then, for every m ≥ 1 the set of m-powers Γm := {gm | g ∈ Γ} contains a finite
index subgroup of Γ.

The converse is not true, even not for finitely generated groups: For every prime
p, Golod and Shafarevich built a finitely generated residually finite infinite group
Γ such that the order of every element of Γ is a power of p. In particular, if m is
coprime to p then any element of Γ is an m-power.

Yet, in [HKLS] two kinds of partial converse results were proved:

Theorem 1.2 (Hrushovski-Kropholler-Lubotzky-Shalev [HKLS]). Let Γ be a virtu-
ally solvable group. If n ≥ 2 and ∪nm=2Γm contains a finite index subgroup of Γ then
Γ is virtually nilpotent. On the other hand, there exists a solvable group Γ which is
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not virtually nilpotent and still there exists m ≥ 2 such that Γm contains a coset of
a finite index subgroup.

Theorem 1.3 (Hrushovski-Kropholler-Lubotzky-Shalev [HKLS]). Let Γ be a finitely
generated linear group. If n ≥ 2 and finitely many tessellates of ∪nm=2Γm cover Γ
then Γ is virtually solvable.

The formulation of the second theorem of [HKLS] suggests a stronger result, i.e.
does the fact that finitely many tessellates of the set of all proper powers ∪∞m=2Γm

cover Γ imply that Γ is virtually solvable? But the methods of [HKLS] are not
suitable for handling all proper powers together. The reason is that the proof uses
only local data of Γ, i.e., the images of ∪nm=2Γm in finite quotients of Γ, and it is
clear that the image of ∪∞m=2Γm in such a quotient is the full quotient group (take
m to be coprime to the size of the finite quotient). Thus, to extend the theorem to
the case of all proper powers one need to combine the local data with some global
data on the group and its elements. A way to do this is to use random walks as we
shell explain below.

A finite subset Σ of Γ is called admissible if it is symmetric, i.e Σ = Σ−1, and
the Cayley graph Cay(Γ,Σ) is not bi-partite. Let Σ be an admissible generating
subset of Γ. Random walks on Cay(Γ,Σ) can be used to ‘measure’ a subset Z ⊆ Γ
by estimating the probability ProbΣ(wk ∈ Z) that the kth-step of a random walk
belongs to Z for larger and larger values of k’s. We say that Z is exponentially small
with respect to Σ if there exist constants c, α > 0 such that ProbΣ(wk ∈ Z) ≤ ce−αk

for all k ∈ N. The set Z is called exponentially small if it is exponentially small with
respect to all admissible generating subsets. It is not hard to see that if a subset is
exponentially small then finitely many tessellates of it cannot cover Γ. Thus, our
first theorem is the desired extension:

Theorem A. Let Γ be a finitely generated subgroup of GLn(C) which is not virtually-

solvable. Then the set of proper powers
∞
∪
m=2

Γm is exponentially small in Γ.

Despite of Theorem 1.3, Theorem A is somewhat surprising: The set ∪∞m=2Γm is
dense in the profinite topology of Γ (as explained above) and still it is exponentially
small.

A reduction process, given in subsection 5.1, shows that it is enough to prove
the claim for a finitely generated subgroup Γ of GLn(Q) whose Zariski-closure is
semisimple. In order to avoid the technical difficulties we will focus for now on the
case where Γ is a Zariski-dense subgroup of SLn(Q). Fix such a subgroup Γ and some
admissible generating subset Σ. For k ∈ N only the elements of Γ which belong to
the ball of radius k, BΣ(k), can occur as the kth-step of a random walk on Cay(Γ,Σ).
As in [LMR], we use in Lemma 4.3 arguments involving matrices norms and number
theory to show that if k is large enough and g ∈ BΣ(k) is a proper power then g
is either virtually-unipotent (i.e. some positive power of g is unipotent) or g is an
m-power for some 2 ≤ m ≤ k2 (in fact, for some 2 ≤ m ≤ ck where c is a constant
depending on Σ).
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The advantage in considering random walks is now clear. By considering only
proper powers which can occur at the kth-step of a random walk we only have to
look at virtually-unipotent elements and at finitely many powers. Thus, we can
divide the proof into two parts, each of them can be proven by looking at the finite
quotients.

The first part is to show that the set of all virtually unipotent elements (not
necessarily proper powers) is exponentially small. Proposition 2.7 shows that if
V (C) is a proper subvariety of SLn(C) defined over Q then V (C)∩Γ is exponentially
small. In turn, Corollary 2.8 implies that the set of virtually unipotent elements of
Γ is contained in a proper subvariety of SLn(C) defined over Q.

The second part is to find positive constants γ and r such that for every k ≥ r
and every 2 ≤ m ≤ k2 we have ProbΣ(wk ∈ Γm) ≤ e−γk. Indeed, if such constants
exist and α is a positive constant strictly smaller the γ then for large enough k

ProbΣ(wk ∈ ∪2≤m≤k2Γ
m) ≤ k2e−γk ≤ e−αk.

However, for every m ≥ 1 the set of m-powers is Zariski-dense in SLn(C) so we can
not use the same argument as for the first part. This brings us to the large sieve
method. Corollary 3.3 gives the general quantitative statement of this method while
Theorem B stated below is an easy consequence which is suitable for now,

Theorem B. Let Γ be a group generated by a finite symmetric set Σ for which
Cay(Γ,Σ) is not bi-partite. Let (Nj)j≥2 be a family of normal finite index subgroups.
Let Z ⊆ Γ and assume that:

1. Γ has property-τ w.r.t to the family {Ni ∩Nj | i, j ≥ 2}.
2. The sequence (|Γ/Nj|)j≥2 grows polynomially in j.
3. |Γ/Ni ∩Nj| = |Γ/Ni||Γ/Nj| for distinct i and j.
4. There exists c > 0 such that |ZNj/Nj| ≤ (1− c)|Γ/Nj| for every j ≥ 2.

Then there are positive constants γ and r depending only on Σ, c and the growth of
(|Γ/Nj|)j≥2 such that ProbΣ(wk ∈ Z) ≤ e−γk for every k ≥ r. In particular, Z is
exponentially small.

Returning to our case, Γ is a Zariski-dense subgroup of SLn(Z). Fix m ≥ 2 and
define Zm to be the set of m-powers. We start by verifying the conditions of Theorem
B in order to bound ProbΣ(wk ∈ Zm). For every prime p define Mp := kerπp where
πp : Γ → SLn(Z/pZ) is the modulo-p homomorphism. Let P be the set of primes.
Then, Γ has property-τ w.r.t to the family {Mp∩Mq | p, q ∈ P} by the recent result
of Salehi-Golsefidy and Varju [SGV]. In fact, for our special case the work Varju [Va]
is enough. The Strong Approximation Theorem of Wiesfeiler [We] and Nori [No]
implies that if p and q are distinct large enough primes then πpq(Γ) = SLn(Z/pqZ).
Recall that SLn(Z/pqZ) is isomorphic to SLn(Z/pZ)×SLn(Z/pZ) so |Γ/Mp∩Mq| =
|Γ/Mp||Γ/Mq| for distinct large enough primes p and q. Lemma 4.1 shows that
if p is a prime which belongs to the sequence (1 + mi)i≥s where s := 3

(
n
2

)
then

|πp(Zm)| ≤
(
1− 1

6n!

)
|πp(Γ)|, so we can take c := 1

6n!
. Let (pi)i≥2 be an ascending

enumeration of the large enough primes which belong to the sequence (1+mi)i≥s and
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define Ni := ker πpi . Then, Γ has property-τ w.r.t to the family {Ni ∩Nj | i, j ≥ 2}
and |ZNj/Nj| ≤ (1 − c)|Γ/Nj| for every j ≥ 2. The last condition left to verify

is that (|Γ/Nj|)j≥2 grows polynomially. Since |Γ/Nj| ≤ pn
2

j the question about the
growth of (|Γ/Nj|)j≥2 translates to a question about the density of the primes in
the sequence (1 + mi)i≥s. We use a quantitative version of Dirichlet’s Theorem
about primes in arithmetic progression (see Theorem 3.4 and Corollary 3.5 below)
to estimate this density and to show that (|Γ/Nj|)j≥2 grows polynomially. Thus
all the conditions of Theorem B hold and there are positive constants γ and r for
which ProbΣ(wk ∈ Zm) ≤ e−γk for every k ≥ r. In fact, a more detailed study of
the growth of (|Γ/Ni|)i≥2 shows that the γ and r are independent of m provided
m ≤ k2. The (sketch of the) proof of the special case is now complete.

The main difficulty in the proof of the general case lies in proving the existence
of the constant c needed in Theorem B. This requires a delicate analysis of the au-
tomorphism groups of almost simple groups. We dedicate Section 6 to this analysis,
which though quite technical, might be of interest on its on. A non-quantitative
version of main theorem of Section 6 (Theorem 6.16) is:

Theorem C. Fix d, l, r ∈ N+. Then there are coprime a, b ∈ N+ and a positive
constant c such that for every prime p which belongs the arithmetic sequence (a +
bj)j≥1 the following claim holds:

Let G be a finite group with a non-trivial normal subgroup H. Furthermore,
assume that H is isomorphic to the direct product of at most r copies of finite
simple groups of Lie type of rank l over the field Fpd with pd elements. Then for
every coset L of H we have |{gm | g ∈ L}| ≤ (1− c)|L|.

The current paper is a first in a series of three (see [LuMe1] and [LuMe2]) in which
the same sieve method is applied to obtain results on the mapping class group and
on the automorphism group of a free group, respectiviliy. It seems that Theorem B
has the potential of having more applications in group theory (see also [Lu2]).

Acknowledgments. The authors are grateful to the ERC and the ISF for par-
tial support. They also want to thank Emmanuel Breuillard, Dorian Goldfeld, Em-
manuel Kowalski and Ron Peled for useful conversations.

2. Random walks, expanders and unipotent elements

2.1. Random Walks.

Definition. Let Γ be a group. A multi-subset Σ of Γ is called symmetric if for every
s ∈ Σ the number of times s occurs in Σ equals to the number of times s−1 occurs in
Σ. A finite symmetric multi-subset Σ of Γ is called admissible if the Cayley graph
Cay(Γ,Σ) is not bi-partite, e.g. the identity belongs to Σ.

Fix an admissible generating multi-subset Σ = [s1, . . . , s|Σ|] of a group Γ. Since
Σ is a multi-set, Cay(Γ,Σ) might contains self loops and multiple edges. Let Σ̄ ⊆ Γ
consists of the elements which belongs to Σ. Note that Cay(Γ,Σ) is connected if
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and only if Σ̄ generates Γ and Cay(Γ,Σ) is bi-partite if and only if Σ̄ satisfies an
odd relation, e.g. contains the identity.

A walk on Cay(Γ,Σ) is an infinite sequence of edges (ek)k∈N+ such that the initial
vertex of e1 is the identity and the terminal vertex of ek is the initial vertex of
ek+1 for every k ∈ N+. The initial vertex of ek+1 is called the kth-step of the walk,
in particular, w0 is the identity. The set of walks W(Σ) can be identified with
{1, . . . , |Σ|}N. Hence, the uniform probability measure of {1, . . . , |Σ|} induces a
structure of a probability space on W(Σ). Once W(Σ) becomes a probability space,
the term ‘random walk’ has a natural meaning. However, it is sometimes useful to
think of a random walk on Cay(Γ,Σ) as constructed as follows: The random walk
starts at the identity and if it arrives to a vertex v at some step then in the next
step it will use an edge which starts at v and every such an edge as probability 1

|Σ|
to be used.

For a subset Z of Γ we denote the probability that the kth-step of a walk belongs
to Z by ProbΣ(wk ∈ Z). Of course, for a general Z the limit limk→∞ ProbΣ(wk ∈ Z)
might not exist and even if it does, this limit might depend on Σ. However, in many
natural cases this limit exists and does not depend on Σ. For example if Z is a finite
index subgroup of Γ then always limk→∞ ProbΣ(wk ∈ Z) = [Γ : Z]−1.

In the sequel we will present and apply the large sieve method which helps to
show that certain subsets are ‘very small’. More formally, a subset Z ⊆ Γ is called
exponentially small with respect to Σ if there are positive constants c and α such
that ProbΣ(wk ∈ Z) ≤ ce−αk for every k ∈ N. This means that not only that this
limit is zero but also that there is an ‘exponentially fast’ convergence to this limit.
A set is exponentially small if it exponentially small with respect to every admissible
generating multi-subset of Γ.

The reason that we chose to work with a multi-sets Σ instead of the underlying
set Σ̄ is that when passing from the group Γ to a quotient, where the image of Z
is exponentially small, we want to deduce that Z ia exponentially small. However,
the quotient homomorphism does not have to be injective on the generating set so
we regard its image as a multi-set.

2.2. Property-τ . Let us now define expanders and property-τ . A more detailed
discussion about these subject can be found in [HLW] and [Lu1]. Let X be an
undirected d-regular graph, self loops and multiple edges are allowed. Let n be the
number of vertices of X. The normalized adjacency matrix of X, denoted by AX ,
is an n× n matrix whose (v, u) entry is dv,u

d
where dv,u is the number of edges in X

between vertex u and vertex v. Being real and symmetric, the matrix AX has n real
eigenvalues which we denote by λ1 ≥ λ2 ≥ · · · ≥ λn. It is not difficult to see that all
the eigenvalues of AX lie between −1 and 1. More precisely, λ1 = 1 and if the graph
is connected then λ2 < 1. The spectral gap of X is defined to be 1 − λ2. A family
of graphs is called ε-expander if the spectral gap of every graph in this family is at
least ε. It is called an expander if it is ε-expander for some ε > 0

The following lemma is a group theoretic formulation of Theorem 3.2 of [HLW].
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Lemma 2.1. Let Γ be a finite group with a finite symmetric generating multi-set
Σ. Let A be the normalized adjacency metrix of of the Cayley graph Cay(Γ,Σ) and
denote the eigenvalues of A by λ1 ≥ λ2 ≥ · · · ≥ λn. Define α := max(|λ2|, |λn|).
Then for every subset T ⊆ Γ and every k ∈ N+ we have:∣∣∣∣ProbΣ(wk ∈ T )− |T |

|Γ|

∣∣∣∣ ≤√|Γ|αk.
�

Let Γ be a finitely generated group and let N be a family of finite index normal
subgroups of Γ. The group Γ has property-τ w.r.t N if for some finite symmetric
generating multi-set Σ and some ε > 0 the family of Cayley graphs {Cay(ΓN ,ΣN) |
N ∈ N} is an ε-expander where ΓN and ΣN are the images of Γ and Σ under the
quotient homomorphism Γ → Γ/N (ΣN is a multi-set). It is not difficult to show
that if Γ has property-τ w.r.t N then for every finite symmetric generating multi-set
Σ there is ε > 0 such that the family of Cayley graphs {Cay(ΓN ,ΣN) | N ∈ N} is an
ε-expander, however, ε may depend on the generating multi-set. The maximal ε for
which the family {Cay(ΓN ,ΣN) | N ∈ N} is an ε-expander is called the expansion
constant of Σ.

We want to apply Lemma 2.1 to groups with property-τ . However, we have to be
a little bit cautious. The expander property bounds the second largest eigenvalue
of the normalized adjacency of the above graphs, but it does not tell us anything
about the absolute value of the smallest eigenvalue. Still, in our case this can be
overcome.

Lemma 2.2. Let Σ be a symmetric generating multi-set of Γ. If Cay(Γ,Σ) is not
bi-partite then there is some constant c > −1 such that for every finite index nor-
mal subgroup N of Γ the smallest eigenvalue of the normalized adjacency matrix of
Cay(ΓN ,ΣN) is greater than c. In fact, c depends only on the size of Σ and the
length of the shortest odd cycle in Cay(Γ,Σ).

Proof. Let N be a finite index normal subgroup of Γ. Let X be the Cayley graph
of ΓN with respect to ΣN . Let l ∈ N be the length of the shortest odd cycle in
Cay(Γ,Σ). The entries on the the diagonal of Al are positive and equal to each other.
In fact, the value of the entries is at least 1

|Σ|l since it is equal to the probability that

a random walk on X starting at some vertex return to this vertex at the lth-step.
Hence, we can write Al as αI + B where α ≥ 1

|Σ|l , I is the identity matrix and B

a real symmetric matrix with non-negative entries such that the sum of the entries
in every row and column is 1 − α. Thus, the smallest eigenvalue of B is at least
α−1 which implies that the smallest eigenvalue of Al is at least 2α−1. In turn, the
smallest eigenvalue of A is at least (2α − 1)

1
l ≥ ( 2

|Σ|l − 1)
1
l which is a real number

greater than −1 since l is odd. �

It is well known that a connected k-regular graph is bi-partite if and only if the
smallest eigenvalue of the normalized adjacency matrix of this graph is −1. Thus,
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Lemma 2.2 shows that the condition that Cay(Γ,Σ) is not bi-partite does not only
imply that the graphs in {Cay(ΓN ,ΣN) | N ∈ N} are not bi-partite but also that
they are ‘uniformly far’ from being bi-partite.

A straightforward corollary of Lemmas 2.1 and 2.2 is:

Corollary 2.3. Let Γ be a finitely generated group with an admissible generating
multi-set Σ. Let N be a family of finite index normal subgroups of Γ. Assume that
the family of Cayley graphs {Cay(ΓN ,ΣN) | N ∈ N} is an ε-expander for some
ε > 0. For every N ∈ N , let πN : Γ → ΓN be the quotient homomorphism. Then
there exists δ > 0, depending only on ε, on the size of Σ and on the length of the
shortest odd cycle in Cay(Γ,Σ), such that for every k ∈ N, every N ∈ N and every
T ⊆ ΓN the following holds:∣∣∣∣ProbΣ(πN(wk) ∈ T )− |T |

|ΓN |

∣∣∣∣ ≤√|ΓN |e−δk.
2.3. Linear groups. Most of the upcoming applications of property-τ will be re-
lated to linear groups. We will mainly use the following result of Salehi-Golsefidy
and Varju which in turn is built on the work Varju [Va] and Bourgain-Gumbord-
Sarnak [BGS1] and on the Product Theorem of Breuillard-Green-Tao [BGT] and of
Pyber-Szabó [PS] who followed and generalized Helfgott [He].

Theorem 2.4 (Salehi-Golsefidy-Varju [SGV]). Fix q0 ∈ N+ and let Γ ⊆ GLn(Z[ 1
q0

])

be a finitely generated subgroup such that the connected component of its Zariski-
closure in GLn(C) is prefect. There exists q1 ∈ N+ divisible by q0 such that Γ has
property-τ with respect to the family

{Nd | d is a square free positive integer coprime to q1}
where Nd is the kernel of the homomorphism πd : Γ → GLn(Z/dZ) induced by the
residue map Z[ 1

q0
]→ Z/dZ.

In practice, it is very helpful to know what is the image πd(Γ). Define

IΓ := {f ∈ Z[ti,j]1≤i.j≤n | ∀g ∈ Γ. f(g) = 0}.
The Zariski-closure G(C) of Γ in GLn(C) equals {g ∈ GLn(C) | ∀f ∈ IΓ. f(g) = 0}.
Let d ∈ N+ and define

G(Z/dZ) := {g ∈ GLn(Z/dZ) | ∀f ∈ IΓ. f̄(g) = 0}
where f̄ is the image of f under the modulo-d homomorphism. Clearly, πd(Γ)is
contained in G(Z/dZ). The following Strong Approximation Theorem of Wiesfeiler
and Nori gives us sufficient conditions for equality to hold.

Theorem 2.5 (Wiesfeiler [We], Nori [No]). Let q0 ∈ N+. Let Γ be a subgroup of
GLn(Z[ 1

q0
]) such that the Zariski-closure of it G(C) is semisimple, connected and

simply connected. There is a number q2 ∈ N+ divisible by q0 such that πd(Γ) =
G(Z/dZ) for every d ∈ N+ coprime to q2.
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A finitely generated subgroup of GLn(Q) is contained in GLn(Z[ 1
q0

]) for some

q0 ∈ N+. Thus, Corollary 2.3 together with Theorems 2.4 and 2.5 imply:

Corollary 2.6. Let Γ be a finitely generated Zariski-dense subgroup of SLn(Q) and
let Σ be an admissible generating multi-subset. There exist q3 ∈ N+ and δ > 0
such that for every square free d ≤ eδk coprime to q3 and every T ⊆ SLn(Z/dZ),

the probability ProbΣ(πd(wk) ∈ T ) is approximately |T |
| SLn(Z/dZ)| and the error term is

smaller than e−δk (so it decays exponentially fast with k).

The following proposition, which gives an example of a family consisting of expo-
nentially small subsets, can be easily deduced from Proposition 3.2 of [BGS1].

Proposition 2.7 (Bourgain-Gamburd-Sarnak, [BGS1]). Let Γ be a finitely gener-
ated Zariski-dense subgroup of SLn(Q). Let V be a proper subvariety of SLn(C)
defined over Q. Then, V (C) ∩ Γ is exponentially small.

Proof. Fix an admissible generating multi-subset Σ and let δ be as in Corollary 2.6.
Assume that k is large enough and pick a prime between 1

2
eδk and eδk coprime to q3

for which V (Z/pZ) is defined. The dimension of V is at most n2−2 so by the Lang-

Weil estimates [LW], |V (Z/pZ)| ≤ (c+ 1)pn
2−2 where c is the number of irreducible

components of maximal dimension of V . Now, | SLn(Z/pZ)| ≥ 1
2
pn

2
so |V (Z/pZ)|
| SLn(Z/qZ)| ≤

2c+2
p

. Corollary 2.6 shows that the probability ProbΣ(πp(wk) ∈ V (Z/pZ)) is at most

(4c+ 5)e−δk. �

Definition. An element g ∈ SLn(Z) is called unipotent if all is eigenvalues are equal
to 1. An element g ∈ SLn(Z) is called virtually unipotent if for some m ≥ 1 the
element gm is unipotent.

A straightforward Corollary of Proposition 2.7 is:

Corollary 2.8. Let Γ be a Zariski-dense subgroup of SLn(Q). Then, the set of
virtually unipotent elements is exponentially small.

Proof. An element g ∈ SLn(Q) is virtually unipotent if and only if all its eigenvalues
are roots of unity. There are only finitely many roots of unity which are roots of a
monic polynomial of degree at most n over Q. Hence, there is a constant m ≥ 2,
depending only on n, such that if g ∈ SLn(Q) is virtually unipotent then gm is
unipotent. The set of elements of SLn(C) whose mth-power is unipotent is a proper
subvariety defined over Z. Proposition 2.7 completes the proof. �

3. The Large Sieve

In the previous section we proved that the set U consisting of virtually-unipotent
elements of Γ is exponentially small where Γ is a Zariski-dense subgroup of SLn(Z).
For every large enough k ∈ N+ we picked a large prime pk with two properties. The
first is that the set πpk(U) is exponentially small in πpk(Γ), i.e., the ratio between
the size of πpk(Γ) and the size of πpk(U) grows exponentially with k. The second is
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that the image of the kth-step of a random walk is ‘almost uniformly distributed’ in
πp(Γ).

There are some exponentially small sets for which an argument of that kind does
not work. For example, it does not work for the set of proper powers or even for
the set of m-powers for some fixed m. The reason is that there is a fixed positive
proportion α > 0 such that for every prime p the proportion of the set of m-powers
in πp(Γ) is at least α. In order to overcome this problem one may look at the image
of Γ under the modulo-d homomorphism where d is a product of a linear number
(as a function of k) of primes. This rises a new problem, the image of the kth-step
of a random walk does not ‘almost uniformly distributed’ in πd(Γ).

The large sieve method provides a way to deal with this situation. It implies
that in order to show that a set Z ⊆ Γ is exponentially small it is enough to find
a constant c > 0 and exponentially many (as a function of k) primes p for which

the following three conditions hold. The first is that |πp(Z)|
|πp(Γ)| ≤ 1− c for every such a

prime p. The second is that the kth-step of a random walk is ‘almost uniformly dis-
tributed’ in πp(Γ) for every such a prime p. The third is that for every two distinct
such primes p and q the images in πp(Γ) and πq(Γ) of the kth-step of a random walk
are ‘almost independent’.

3.1. The Large Sieve Theorem. We start this section by stating a lemma which
has nothing to do with property-τ nor with groups. Property-τ will come into the
picture once we try to use this proposition in the context of group theory. We are
thankful to Ron Peled who simplified the proof of the next lemma by suggesting the
use of Chebyshev’s inequality.

Lemma 3.1. Let U be a probability space. Let (Ai)1≤i≤L be a series of events. For
1 ≤ i, j ≤ L denote:

W (i, j) := Prob(Ai ∩ Aj)− Prob(Ai) Prob(Aj),

4 := max
1≤i 6=j≤L

|W (i, j)|,

and

M :=
L∑
i=1

Prob(Ai).

Then:

Prob(U \
⋃

1≤i≤L

Ai) ≤
L+ L24
M2

.

Proof. Chebyshev’s inequality says that if X is a random variable then for C ≥ 0:

Prob(|X − E(X)|) ≥ C) ≤ Var(X)

C2
.
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In particular, if C = E(X), then:

Prob(X = 0) ≤ Prob(|X − E(X)| ≥ E(X)) ≤ Var(X)

E(X)2
.

Define Xi to be the indicator function of Ai and set X :=
∑

1≤i≤LXi. Then,
M = E(X) while

Var(X) := E((X − E(X))2) =
∑

1≤i,j≤L

E(XiXj − 2Xi E(Xj) + E(Xi)E(Xj)) =

∑
1≤i,j≤L

(E(XiXj)− E(Xi)E(Xj)) =
∑

1≤i,j≤L

W (i, j) ≤ L+ L24.

Thus,

Prob(U \
⋃

0≤i≤L

Ai) = Prob(X = 0) ≤ L+ L24
M2

.

�

Theorem 3.2. Fix s ≥ 2. Let Γ be a finitely generated group and let Σ ⊂ Γ be an
admissible multi-set. Let (Ni)i≥2 be a series of finite index normal subgroups of Γ.
For i, j ≥ 2 denote Ni,j := Ni ∩ Nj, Γi,j := Γ/Ni,j and let πi,j : Γ → Γi,j be the
quotient homomorphism. Let Z ⊆ Γ and assume that there are positive constants δ,
c and d and a sequence (Ti)i≥2 such that for every i, j ≥ s the following conditions
hold:

0. Ti ⊆ Γi,i \ πi,i(Z).

1. For every T ⊆ Γi,j,
∣∣∣ProbΣ(πi,j(wk) ∈ T )− |T |

|Γi,j |

∣∣∣ ≤√|Γi,j|e−δk.
2. |Γi,i| ≤ id .

3. If i and j are distinct then
|{gNi,j |gNi∈Ti ∧ gNj∈Tj}|

|Γi,j | =
|Ti||Tj |
|Γi,i||Γj,j | .

4. |Ti|
|Γi,i| ≥ c.

Then for every k ≥ d+1
δ

log(2s), ProbΣ(wk ∈ Z) ≤ 20
c2
e−

δk
d+1 . In particular, Z is

exponentially small w.r.t Σ.

Proof. For every i ∈ I denote Γi := Γi,i and πi := πi,i. Conditions 1 and 3 imply
that for every distinct i, j ∈ I and k ∈ N+:

(1)

∣∣∣∣ProbΣ(πi(wk) ∈ Ti)−
|Ti|
|Γi|

∣∣∣∣ ≤√|Γi|e−δk
and

(2)

∣∣∣∣ProbΣ(πi(wk) ∈ Ti ∧ πj(wk) ∈ Tj)−
|Ti|
|Γi|
|Tj|
|Γj|

∣∣∣∣ ≤√|Γi||Γj|e−δk.
Recall that the set of walks W(Σ) is a probability space. For i ≥ s and k ≥ 1,

denote Ai,k := {w ∈ W(Σ) | πi(wk) ∈ Ti}. Note that if w is a walk and wk ∈ Z,
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then w 6∈ ∪i≥sAi,k. We can rewrite equations (1) and (2) in the form:

(3)

∣∣∣∣Prob(Ai,k)−
|Ti|
|Γi|

∣∣∣∣ ≤√|Γi|e−δk
and

(4)

∣∣∣∣Prob(Ai,k ∩ Aj,k)−
|Ti|
|Γi|
|Tj|
|Γj|

∣∣∣∣ ≤√|Γi||Γj|e−δk.
Thus, Equations 3 and 4 together with Condition 2 imply that for i 6= j:

(5) |Prob(Ai,k ∩ Aj,k)− Prob(Ai,k)Prob(Aj,k)| ≤ 4max(i, j)de−δk.

Define Lk := e
δk
d+1 . Equation (5) shows that for every distinct s ≤ i, j ≤ Lk

we have |Wk(i, j)| ≤ 4e−
δk
d+1 where Wk(i, j) is defined in a similar manner to the

definition in Lemma 3.1. Hence,

∆k := max
1≤i 6=j≤Lk

|Wk(i, j)| ≤ 4e−
δk
d+1 = 4L−1

k

while Condition 4 implies that

Mk :=
∑

s≤i≤Lk

Prob(Ai,k) ≥ c(Lk − s).

If k ≥ d+1
δ

log(2s) then Lk − s ≥ 1
2
Lk. Proposition 3.1 implies that for every

k ≥ d+1
δ

log(2s):

ProbΣ(wk ∈ Z) ≤ Prob(W(Σ) \
⋃
i∈Lk

Ai,k) ≤
Lk + Lk

2∆k

M2
k

≤ 20

c2Lk
=

20

c2
e−

δk
d+1 .

�

We are now ready to formulate the Group Large Sieve (GLS) method. The reader
may note that Theorem B of the introduction is a special case of the following:

Theorem 3.3 (GLS). Fix s ≥ 2. Let Γ be a finitely generated group and let Σ be
an admissible multi-subset. Let Λ be a finite index subgroup of Γ and let (Ni)i≥2 be
family of normal finite index subgroups of Γ which are contained in Λ. Let Z ⊆ Σ
and assume that the following conditions hold:

1. Γ has property-τ w.r.t the family {Ni ∩Nj | i, j ≥ s}.
2. There exists a constant d such that |Γ/Nj| ≤ jd for every j ≥ s.
3. |Λ/Ni ∩Nj| = |Λ/Ni||Λ/Nj| for every distinct i, j ≥ s.
4. There exists c > 0 such that for every coset C ∈ Γ/Λ and every j ≥ s,

|(Z ∩ C)Nj/Nj| ≤ (1− c)|Λ/Nj|.
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Then there are positive constants γ and t such that ProbΣ(wk ∈ Z) ≤ e−γk for every
k ≥ t log s. In particular, Z is exponentially small.

In fact, the constants γ and t depends only on the spectral gap of the family of
Cayley graphs {Cay(Γ/Ni,ΣNi/Ni) | i ≥ 2}, the size of Σ, the length of the shortest
odd cycle in Cay(Γ,Σ) and the two constants c and d

Proof. It is enough to verify the Conditions of Theorem 3.2. The existence of con-
stants δ and d for which Conditions 1 and 2 of Theorem 3.2 hold follows from
Conditions 1 and 2 of the current corollary together with Corollary 2.3. Condition
4 of the corollary allows us to choose for every i ≥ s a constant bi ≥ c and a subset
Ti ⊆ Γ/Ni \ ZNi/Ni such that |Ti ∩ C/Nj| = bi|Λ/Ni| for every coset C ∈ Γ/Λ.
Conditions 0 and 4 of Theorem 3.2 are readily satisfied by the definition of Ti. The

definition also implies that for every i ≥ s, |Ti|
|Γi,i| = bi. In turn, Condition 3 of the

corollary ensures that for every distinct i, j ≥ s,
|{gNi,j |gNi∈Ti ∧ gNj∈Tj}|

|Γi,j | = bibj. Thus,

Condition 3 of Theorem 3.2 also holds. �

Our next goal is to apply the group large sieve method in the situation where
Γ is a subgroup of SLn(Z). For every prime p, let πp : Γ → SLn(Z/pZ) be the
modulo-p homomorphism. We shall see that it is fruitful to define Ni := kerπpi
where p2, p3, . . . is an ascending enumeration of the primes which belong to some
arithmetic progression. In order to verify Condition 2 of Corollary 3.3 with respect
to the sequence (Ni)i≥2, we need the next theorem about the density of the primes
in arithmetic progressions (for a proof see Chapter 22 of [Da]).

Theorem 3.4 (Quantitative Dirichlet’s Theorem). Let 0 ≤ ε < 1 and t ≥ 1 be
constants. Then there exists a constant r > 0 such that for every k ≥ r, every

x ≥ e
k
t and every two coprime numbers 1 ≤ a, b ≤ kt the number of primes p which

satisfy:

• 1 ≤ p ≤ x
• p belongs to the series (a+ bj)j≥1.

is at least 1−ε
ϕ(b)

x
log x

where ϕ is the Euler function.

A straightforward Corollary of Theorem 3.4 is:

Corollary 3.5. Let t > 0. Then there is a positive constant r depending only on t
such that for every k ≥ r and every two coprime natural numbers a, b ≤ kt, if (pi)i≥1

is an ascending enumeration of the primes which belong to the sequence (a + bi)i≥1

then pi ≤ i2 for every i ≥ e
k
t .

We can now deduce:

Proposition 3.6. Fix n ≥ 2 and c > 0. Let Γ be a Zariski-dense subgroup of SLn(Z)
with an admissible multi-subset Σ. For every q ∈ N+, let πq : Γ → SLn(Z/qZ) be
the modulo-q homomorphism. Then, there exist two positive constants γ and r,
depending only on Γ, Σ, and c such that the following statement holds:



SIEVE METHODS IN GROUP THEORY I: POWERS IN LINEAR GROUPS 13

Let Z be a subset of Γ and let k ≥ r be a natural number. Assume that there
are two coprime natural numbers 2 ≤ a, b ≤ k2 such that for every prime p which
belongs to the arithmetic progression (a + bj)j≥1, the size of πp(Z) is at most (1 −
c)| SLn(Z/pZ)|. Then,

ProbΣ(wk ∈ Z) ≤ e−γk.

Proof. Let a ,b, c, k and Z be as in the statement. We need to show that there are
positive constants γ and r depending only on Γ ,Σ and c such that if k ≥ r then

ProbΣ(wk ∈ Z) ≤ e−γk.

Denote q3 := q1q2 where q1 is as in Theorem 2.4 and q2 is as in Theorem 2.5.
Note that q3 depends only on Γ and Σ. Let (pi)i≥2 be an ascending enumeration
of the primes which belong to the sequence (1 + bq3i)i≥1. Denote Ni := ker πpi for
every i ≥ 2. Theorem 2.4 implies that Γ has property-τ with respect to the family
(Ni ∩Nj)i,j≥2 and Theorem 2.5 (Strong Approximation) implies that if q ∈ N+ is a
product of primes which belong to (a+ bq3i)i≥1 then πq(Γ) = SLn(Z/qZ).

We now verify the four conditions of GLS (Theorem 3.3 for Λ = Γ). The above
paragraph together with the fact that SLn(Z/p1p2Z) ∼= SLn(Z/p1Z) × SLn(Z/p2Z)
for distinct primes p1 and p2 imply that Conditions 1 and 3 of GLS are satisfied for
every i, j ≥ 2. Condition 4 of GLS is true for every j ≥ 2 by assumption. Finally, we
will show that Condition 2 of GLS holds for d := 2n2. Let δ be the spectral gap of the
family {Cay(Γ/Ni,ΣNi/Ni) | i ≥ 2}. Let γ := γ(δ, |Σ|, c, d) and t := t(δ, |Σ|, c, d) be
the constants of GLS for d = 2n2. Corollary 3.5 implies that there exists a constant

r such that if k ≥ r and j ≥ e
k
2t then pj ≤ j2 so |Γ/Nj| ≤ j2n2

. We can assume

that k ≥ r and denote s := e
k
2t . Hence, Condition 2 of GLS holds for every j ≥ s.

We finished to verify all the conditions of GLS. Since k ≥ t log s, GLS implies that
ProbΣ(wk ∈ Z) ≤ e−γk. �

3.2. An extension of Corollary 3.6. This subsection is needed for the proof of
the general case of Theorem A. A reader that is only interested in the special case
(Zariski-dense subgroup of SLn(Z)) can skip this subsection.

Proposition 3.7. Let Γ ≤ GLn(Q) be a finitely generated group such that its
Zariski-closure in GLn(C) is semisimple. Then there are:

• A finite index normal subgroup Λ of Γ.
• A set P which contains almost all primes.
• For every prime p ∈ P, an epimorphism πp : Γ → Γp such that Γp is a

non-trivial finite group and Np := ker πp is contained in Λ.
• Constants d, l, s ∈ N+.

such that:

1. Γ has property-τ with respect to the family {Np,q}p,q∈P where Np,q := Np∩Nq.
2. Λp := πp(Λ) is a direct product of at most l finite simple groups of Lie type

of rank at most l over finite extensions of Fp of degree at most l for every
p ∈ P. Furthermore, 1

s
pd ≤ |Λp| ≤ spd ≤ pd+1.



14 ALEXANDER LUBOTZKY AND CHEN MEIRI

3. The natural homomorphism πp,q : Λp,q → Λp × Λq is an isomorphism for all
distinct p, q ∈ P where Λp,q := Λ/Np,q.

Proof. Since Γ is finitely generated it is contained in GLn(Z[ 1
q0

]) for some q0 ∈ N+.

The connected component of the Zariski-closure of Γ in GLn(C), denoted by G(C),
is defined over Q. Hence, for every large enough prime p the group G(Fp) and the
residue map Γ◦ → G(Fp) is defined where Γ◦ := Γ ∩G(C).

We would like to apply the Strong Approximation Theorem to conclude that for
every large enough prime p the residue map Γ◦ → G(Fp) is an epimorphism. But we
have a problem, our G(C) is connected and semisimple but not necessarily simply
connected. To overcome this problem we let ψ : G̃→ G be the universal cover of G.
The algebraic group G̃ and the rational homomorphism ψ are defined over Q. The
group ψ(G̃(Q)) is a normal coabelian subgroup of G(Q). This implies that there
exists Γ̃1 ≤ G̃(Q) where ψ|Γ̃1

is an isomorphism onto a finite index subgroup Γ1 of Γ◦

(see chapter 16 of [LuSe]). The image of Γ1 under the residue map Γ1 → G(Fp) is the

same as the image of Γ̃1 under the composition Γ̃1 → G̃(Fp) → G(Fp). The Strong
Approximation Theorem (Theorem 2.5) says that for large enough prime p the first
homomorphism is an epimorphism. The kernel of the second homomorphism is
contained in the center of G̃(Fp) and the image is of index at most b in G(Fp) where
b ∈ N+ is some constant independent of p.

We define Λ to be the intersection of all subgroups of index at most b of Γ1. For
large enough prime p we get a homomorphism πp : Λ → G̃(Fp)/Z(G̃(Fp)) and we

denote Np := kerπp. The structure of G̃(Fp)/Z(G̃(Fp)) is well known and there are
c, d, l ∈ N+ such that the requirements of condition 2 are satisfied (see [JKZ] and
the reference therein). In fact, d := dim(G̃(C)). In particular, this structure assures
that πp is an epimorphism for a large enough prime p so condition 2 is satisfied for
the set P consisting of large enough primes. Condition 3 then follows since two
finite simple Lie groups over field of different characteristics are not isomorphic.
Condition 1 follows from Theorem 2.4. �

The proof of the next Proposition is identical to the proof of Proposition 3.6 so
we omit it.

Proposition 3.8. Fix a positive constant c. Let Γ be as in Proposition 3.7 and let Σ
be an admissible generating multi-set of Γ. Then, there exist two positive constants
γ and r, depending only on Γ and Σ and c such that the following statement holds:

Let Z be a subset of Γ and let k ≥ r be a natural number. Assume that there
are two coprime natural numbers 2 ≤ a, b ≤ k5 such that for every prime p which
belongs to the arithmetic progression (a+ bj)j≥1 and every coset C ∈ Γp/Λp, the size
of πp(Z) ∩ C is at most (1− c)|Λp|. Then,

ProbΣ(wk ∈ Z) ≤ e−γk.
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4. Proof of Theorem A for a Zariski-dense subgroups of SLn(Z)

In this section Γ denotes a Zariski-dense subgroup of SLn(Z) and Σ is an admissible
generating multi-subset of Γ.

Lemma 4.1. Fix m ≥ 2. Let p be a prime which satisfies:

• p ≥ 3
(
n
2

)
+ 1.

• p = 1(modm).

Then |{gm | g ∈ SLn(Z/pZ)}| ≤ (1− 1
6n!

)| SLn(Z/pZ)|.

Proof. The subset T of diagonal matrices of SLn(Z/pZ) is a subgroup isomorphic to
Cn−1
p−1 where Cp−1 is a cyclic group of order p − 1. Since m divides p − 1 the map

x 7→ xm is mn−1-to-1 on T so

|{tm | t ∈ T}| ≤ 1

mn−1
|T | ≤ 1

2
|T |.

An element of T is called regular if all its non-zero entries are distinct. The size of
the set S consisting of regular elements is at least (p− 1)n−1−

(
n
2

)
(p− 1)n−2. Thus,

if p ≥ 1 + 3
(
n
2

)
then

|S| ≥ 2

3
|T |

while

|{tm | t ∈ S}| ≤ 1

2
|T |.

Let s ∈ S, then the centralizer of s is T . If g ∈ SLn(Z/pZ) and gsg−1 ∈ T then
gsg−1 is also regular so its centralizer is also T . On the other hand, conjugation by
g is an automorphism, so the centralizer of gsg−1 is gTg−1. Thus, T = gTg−1 and g
belongs to the normalizer N of T . The normalizer N is the set of monomial matrices,
so N/T is isomorphic to the symmetric group on n elements and [N : T ] = n!.

Let R be a set of representatives of the left cosets of N . Then,

|R| = 1

n!
[SLn(Z/pZ) : T ].

If r1, r2 ∈ R are distinct then r1Sr
−1
1 and r2Sr

−1
2 are disjoint. Thus for S̄ :=

∪r∈RrSr−1,

|S̄| ≥ 2

3
|T | · 1

n!

| SLn(Z/pZ)|
|T |

=
2

3n!
| SLn(Z/pZ)|

while

|{sm | s ∈ S̄}| ≤ 1

2
|T | · 1

n!

| SLn(Z/pZ)|
|T |

=
1

2n!
| SLn(Z/pZ)|.

�

Combining Lemma 4.1 with corollary 3.6 we get:
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Corollary 4.2. There exist two positive constants γ and r such that if k,m ∈ N+

with k ≥ r and 2 ≤ m ≤ k2 then

ProbΣ(wk ∈ Γm) ≤ e−γk.

The next lemma shows what kind of m-powers are possible at the kth-step of a
random walk.

Lemma 4.3. There is a constant s ∈ N+ such that if the kth-step wk of a random
walk on Cay(Γ,Σ) is a proper power then one of the following holds:

• wk is virtually-unipotent.
• wk = gm for some element g ∈ G and some prime number m ≤ sk.

Proof. For x ∈ Cn let |x| be L2-norm of x. Recall that the operator norm of an
element g ∈ Γ is ||g|| := max|x|=1 |gx|. Note that if g, h ∈ Γ and λ is an eigenvalue
of g then ||gh|| ≤ ||g||||h|| and ||λ|| ≤ ||g||. Define c := maxg∈Σ ||g|| so ||wk|| ≤ ck

for every walk w.
If a polynomial f of degree n with integer coefficients is not a product of cy-

clothymic polynomials then it has a root with absolute value greater then 1 + ε
where ε depends only on n (see for example Proposition 5.5 and Corollary 5.6 of
[Mi]). Thus, if g ∈ SLn(Z) is not virtually unipotent then it has an eigenvalue λ
with absolute value greater then 1 + ε so ||gm|| ≥ (1 + ε)m for every m ∈ N.

A power of a virtually unipotent element is virtually unipotent. Hence, if the the
kth-step wk of a walk is an m-power but not virtually unipotent then (1 + ε)m ≤ ck

so m ≤ sk for s := log c
log(1+ε)

. �

Our goal is to show that the set of proper powers in Γ is exponentially small.
The set of virtually unipotent elements in Γ is exponentially small by Corollary 2.8.
Thus, Lemma 4.3 implies that it is enough to show that the set Z ⊆ Γ of elements
which are proper powers but not virtually unipotent is exponentially small. Let s
be as in Lemma 4.3 and let γ and r be as in 4.2. If k ≥ max(r, s) then

ProbΣ(wk ∈ Z) = ProbΣ(wk ∈ ∪2≤m≤k2Γ
m) ≤ k2e−γk.

If α is a positive constant smaller than γ then for large enough k,

ProbΣ(wk ∈ Z) ≤ k2e−γk ≤ e−αk.

Thus, Z is indeed exponentially small and the proof is complete.

5. Proof of Theorem A

5.1. Reduction. The next lemma shows that it is enough to prove Theorem A for
a finitely generated subgroup of GLn(Q) such that the connected component of its
Zariski-closure is a non-trivial semisimple group.

Lemma 5.1. Let Γ ≤ GLm(C) be a finitely generated group which is not virtually
solvable. Then there is a positive integer n and a homomorphism α : Γ → GLn(Q)
such that the connected component of the Zariski-closure of α(Γ) is semisimple.
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Proof. Proposition 16.4.13 of [LuSe] shows that there is an n1 ∈ N+ and a homo-
morphism α1 : Γ→ GLn1(Q) such that α(Γ) is not a virtually solvable group. The
connected component of the Zariski-closure of α(Γ) is not necessarily semisimple.
However, we can divide it by its solvable radical, which is defined over Q. Thus, there
is n2 ∈ N+ and a homomorphism α2 : α1(Γ) → GLn2(Q) such that the connected
component of the Zariski-closure of α2 ◦ α1(Γ) is semisimple. Define α := α2 ◦ α1

and n := n2. �

5.2. Virtually unipotent elements. We start this section with an analog of
Proposition 2.7.

Proposition 5.2. Let Γ be a finitely generated subgroup of GLn(Q) whose Zariski-
closure Γ̄ is semisimple. Assume that V (C) is a variety defined over Q and that
V (C) does not contain any coset of the connected component of Γ̄. Then, V (C) ∩ Γ
is exponentially small.

The proof of Proposition 5.2 is almost identical to the one of Proposition 2.7 so
we omit it. The next Corollary is the main result of this subsection.

Corollary 5.3. Let Γ be a finitely generated subgroup of GLn(Q) whose Zariski-
closure is semisimple. Then, the set of virtually unipotent elements is exponentially
small.

Proof. As in the proof proof of Corollary 2.8, there exists a positive integer t such
that if g ∈ Γ is virtually unipotent then gt is unipotent. Thus, the set of virtually
unipotent elements is contained in a subvariety defined over Q. Proposition 2.7
above and Proposition 5.4 below complete the proof. �

Lemma 5.4. Let t ∈ N+. Let Γ be a finitely generated subgroup of GLn(Q) whose
Zariski-closure in GLn(C), denoted by Γ̄, is a semisimple group. Then every coset of
the identity component Γ̄◦ of Γ̄ contains an element whose t-power is not unipotent.

Proof. By replacing Γ with its image in Γ̄◦/Z(Γ̄◦) we can assume that Γ̄◦ has trivial
center. Let C be some coset of Γ̄◦ and assume that for every g ∈ C ∩ Γ the power
gt is unipotent. Then the eigenvalues of every element of C ∩Γ are roots of unity of
bounded order. Thus, there is only a finite number of Jordan forms for the elements
of C ∩ Γ. The set of elements with a given Jordan form is Zariski-closed so all the
elements of C have the same Jordan form since C is irreducible and C ∩ Γ is dense
in it. In particular, all elements of C have the same order.

The automorphism group of Γ̄◦ is a semidirect product of the group of inner
automorphism and the finite group of outer automorphisms. Hence, every coset of
Inn(Γ̄◦) in Aut(Γ̄◦) contains an element of finite order. This implies that there are
some k ∈ N+ and g ∈ C such that gk ∈ ZΓ̄(Γ̄◦). However, this centralizer is finite so
g has finite order. Thus, all the elements of C has the same finite order. In the next
paragraph we will show that the orders of the elements in every coset of Inn(Γ̄◦) are
unbounded so the same is true for C and we get the desired contradiction.
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If Γ̄◦ is a simple group of adjoint type then every coset of Inn(Γ̄◦) in Aut(Γ̄◦)
contains a graph automorphism α. The graph automorphism α fixes some root
of the Dynkin diagram unless the diagram is of type A2n and in that case the
automorphism switches between the two roots at the ends. In any case, α pointwise
fixes some torus T and the orders of the elements of αT ⊆ α Inn(Γ̄◦) are unbounded
(we identified T with its image in Inn(Γ̄◦)).

In the general case Γ̄◦ has a characteristic subgroup N such that Γ̄◦/N is iso-
morphic to Λk where Λ is a simple group of adjoint type and k ∈ N+. It suffices
to show that for every α ∈ Aut(Λk) the orders of the elements which belong to
α Inn(Λk) are unbounded. As before, this will follow once we show that there is an
element in α Inn(Λk) which pointwise fixes a non trivial torus. As α ∈ Aut(Λk),
there are α1, · · · , αk ∈ Aut(Λ) and a permutation σ ∈ Sym(k) such that for every
(x1, · · · , xk) ∈ Λk we have

α(x1, · · · , xk) = (α1(xσ(1)), · · · , αk(xσ(k))).

If the type of Λ is different from D4 then there is only one non-identity graph
automorphism, so by the previous paragraph we see that there is a non-trivial torus
T which is pointwise fixed by all graph automorphisms. If the type of Λ is D4 then
all the graph automorphisms fix the central root and thus pointwise fix the torus T
corresponds to this root. By replacing α with another representative of the coset
α Inn(Λk) we can assume that αi is a graph automorphism for every 1 ≤ i ≤ k so α
pointwise fixes T ∗ := {(t, · · · , t) | t ∈ T}. As before the fact the the orders of αT ∗

are unbounded implies that the orders of α Inn(Λk) are unbounded. �

5.3. Completion of the proof of Theorem A. Let Γ be a finitely generated
subgroup of GLn(Q) whose Zariski-closure Γ̄ is semisimple. Then, there are finitely
many primes p1, . . . , pr such that Γ is contained in GLn(Z[ 1

p1···pr ]). Fix an admissible

generating multi-subset Σ of Γ.
We start with some number theoretic arguments. For every 1 ≤ i ≤ r, let | · |i be

some extension of a pi-adic valuation of Q to the algebraic closure Q̃ of Q. Fix an
embedding of Q̃ in C and let | · |0 be the restriction to Q̃ of the absolute value of C.
It is well known that for every n ∈ N+, there exists a constant c > 1 such that if x
is an algebraic integer of degree at most n then either x is a root of unity or some
Galois conjugate y of x satisfies |y|0 ≥ c (see Proposition 5.5 and Corollary 5.6 of
[Mi]). The following lemma is a straightforward generalization of this fact.

Lemma 5.5. Denote R := Z[1
q
] where q := p1 · · · pr. Then, for every n ∈ N+ there

exists a constant c > 1 such that if x ∈ Q̃∗ is integral over R of degree at most n
then either x is a root of unity or |y|i ≥ c for some 0 ≤ i ≤ r and some Galois
conjugate y of x.

Proof. Let x ∈ Q̃∗ be integral over R such that its minimal polynomial f over R has
degree at most n. The roots of f are the Galois conjugates of x. The case where all
the coefficients of f belong to Z is the classical case above. Thus, we can assume
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that some coefficient b of f does not belong to Z. Define d := min1≤i≤r |pi|
− 1
n

i and
note that d > 1. There is 1 ≤ j ≤ r such that pj is a factor of the denominator of b
so |b|j ≥ dn. The coefficient b is a symmetric polynomial of degree at most n in the
Galois conjugates of x and | · |j is non-archimedean so there is at least one Galois
conjugate y of x with |y|j ≥ d. �

For 1 ≤ i ≤ r and x̄ = (x1, · · · , xn) ∈ Q̃n define

|x̄|i := max
1≤j≤n

|xj|i

and

|x̄|0 :=

√√√√ r∑
j=1

|xj|20.

For an element g ∈ Γ and 0 ≤ i ≤ r, define:

|g|i := max
x̄ 6=0

|gx̄|i
|x|i

.

Note that if g, h ∈ Γ and λ is an eigenvalue of g then |gh|i ≤ |g|i|h|i and |λ|i ≤ |g|i.

Lemma 5.6. There is a constant t ∈ N+ such that for every k ∈ N+ and every walk
w on Cay(Γ,Σ), if wk is a proper power then one of the following holds:

• wk is virtually-unipotent.
• wk = gm for some element g ∈ G and some prime number m ≤ tk.

Proof. Fix k ∈ N and define:

b := max
g∈Σ ∧ 0≤i≤r

|g|i.

Then, |wk|i ≤ bk for every walk w and every 0 ≤ i ≤ r. Let g ∈ Γ. If λ is an
eigenvalue of g then so are all the Galois conjugates of it. Lemma 5.5 shows that
there is a constant c > 1 such that if g is not virtually unipotent then |λ|i ≥ c for
some eigenvalue λ of g and some 0 ≤ i ≤ r. In the later case for every m ∈ N+ we
have that λm is an eigenvalue of gm and |gm|i ≥ |λm|i ≥ cm. Thus, if w is a walk on
Cay(Γ,Σ) and wk = gm for some g ∈ Γ and some m ∈ N+ then either wk is virtually
unipotent or m ≤ tk where t := log b

log c
. �

Lemma 5.7. There exist two positive constants α and r such that if k ≥ r then

ProbΣ(wk ∈ ∪2≤m≤k2Γ
m) ≤ e−αk.

Proof. We use the notation of Proposition 3.7. For every coset D ∈ Γ/Λ and every
m ≥ 2 define Dm := {gm | g ∈ D}. Proposition 3.8 together with Corollary 6.17
imply that there are positive constants γ and r such that for every k ≥ r and for
every coset D ∈ Γ/Λ:

ProbΣ(wk ∈ ∪2≤m≤k2D
m) ≤ k2e−γk.
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The subgroup Λ is of finite index in Γ so it has only finitely many cosets. Hence, if
0 < α < γ and k is large enough then:

ProbΣ(wk ∈ ∪2≤m≤k2Γ
m) ≤ e−αk.

�

Corollary 5.3 together with Lemmas 5.6 and 5.7 complete the proof of Theorem
A (modulo the proof of Theorem 6.16 and corollary 6.17).

6. Powers in finite groups of Lie Type

The goal of this section to bound the number of powers in a finite extension of a
direct product of finite groups of Lie type (see Theorem 6.16 below). This bound is
needed for the proof of Theorem 1 but it might be interesting on its own right.

6.1. Notation. The letter p always denotes a prime number greater than 3 (some-
times further restrictions which will be specified). The letter q denotes some power
of p. For a group G, a subgroup T ⊆ G and an automorphism µ ∈ Aut(G), we
denote Tµ := {t ∈ T | µ(t) = t}. In most cases the group T will be abelian and
µ will preserve T . In addition, if n ∈ N then Tn := {t ∈ T | ZG(tn) = T} and
Tµ,n := Tµ ∩ Tn.

We fix some root system Φ ⊆ Rl and let W (Φ) be its Weyl group. The symbols
Gq (G∗q) represents the Simply connected Chevalley (Steinberg) group of type Φ over
the field with q elements Fq. Unless otherwise mentioned, the term finite Lie group
means a Chevalley or Steinberg group of adjoint type although the results apply to
all finite Lie groups. A detailed description of these groups is given in later sections.

6.2. Powers in arbitrary groups. We start this section with three lemmas.

Lemma 6.1. Let G be a finite group with a maximal abelian subgroup T . Assume
µ ∈ Aut(G) preserves T and denote n := ord(µ). If t ∈ Tµ,n then

Tµ = {g ∈ G | gtµ(g)−1 = t}.

Proof. The inclusion ⊆ is clear. For the reverse inclusion assume that gt = tµ(g).
The element t is fixed by µ, so µi(g)t = tµi+1(g) for every 0 ≤ i ≤ n− 1. Hence,

gtn = tµ(g)tn−1 = t2µ2(g)tn−2 = · · · = tnµn(g) = tng.

This means the g centralize tn so g ∈ T . Thus, gtµ(g)−1 = t = gtg−1 so µ(g) = g,
i.e g ∈ Tµ. �

Lemma 6.2. Let G be a finite group with a maximal abelian subgroup T . Let g ∈ G
and t ∈ T . If ZG(t) = T and gtg−1 ∈ T then g ∈ N where N := NG(T ).

Proof. Conjugation by g is an automorphism so ZG(gtg−1) = g ZG(t)g−1 = gTg−1.
But T is abelian and so T ⊆ ZG(gtg−1) = gTg−1 which implies T = gTg−1 and
g ∈ N . �
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Lemma 6.3. Let G be a finite group with a maximal abelian subgroup T . Assume
µ ∈ Aut(G) preserves T and denote n := ord(µ). Let c be the number of elements
of T of order dividing n. If |Tµ,n| > 1

2
|Tµ|, then the set

L := {g ∈ G | ∃s ∈ Tµ,n s.t. gsµ(g−1) ∈ Tµ,n}
is a subgroup of G which contains Tµ as a subgroup of index at most c[N : T ] where
N := NG(T ).

Proof. Let g ∈ L. We start by showing that gtµ(g−1) ∈ Tµ for every t ∈ Tµ. Choose
s ∈ Tµ,n such that gsµ(g−1) ∈ Tµ,n. Every element of Tµ is fixed by µ, so

gsµ(g−1) = µ(g)sµ2(g−1) and µ(g−1)gsµ(g−1)µ2(g) = s.

Lemma 6.1 together with the fact that µ(µ(g−1)g)−1 = µ(g−1)µ2(g) implies that
u := µ(g−1)g ∈ Tµ. The element u is fixed by µ so

u = µi(u) = µi+1(g−1)µi(g)

for every 0 ≤ i ≤ n− 1. Multiplying these equations we get that

un = µn−1(u) · · ·µ1(u)u = 1

which means that the order of u divides n.
It is clear that L is closed to inverses so g−1 ∈ L and the argument above assures

that v := µ(g)g−1 ∈ Tµ. Since gsg−1v−1 = gsµ(g−1) ∈ Tµ,n also gsg−1 ∈ Tµ.
The fact that s ∈ Tµ,n implies that ZG(s) = T , so Lemma 6.2 shows that g ∈ N .
In particular, if t ∈ Tµ then gtµ(g−1) = gtg−1v−1 ∈ T . In order to show that
gtµ(g−1) ∈ Tµ we have to show that it is fixed by µ. Indeed,

µ(gtµ(g−1)) = µ(g)tµ2(g−1) = gg−1µ(g)tµ2(g−1)µ(g)µ(g−1) = gu−1tuµ(g−1) = gtµ(g−1)

where that last equality is true since T is commutative.
Define Y := {g ∈ G | gTµµ(g−1) = Tµ}, clearly Y is a subgroup of G. The

previous two paragraphs show that L ⊆ Y , in fact there is an equality. Indeed, the
pigeon hole principle together with the fact |Tµ,n| > 1

2
|Tµ| show that if g ∈ Y then

gsµ(g)−1 ∈ Tµ,n for some s ∈ Tµ,n.
We have established that L is a group contained in N and it is clear that Tµ ≤ L.

Hence, in order to show that [L : Tµ] ≤ c[N : T ] we only have to prove that
[L ∩ T : Tµ] ≤ c. We showed that if g ∈ L then µ(g)g−1 is an element of Tµ whose
order divides n. The number of elements of Tµ of order dividing n is c so it will be
enough to show that if t1, t2 ∈ L∩T and µ(t1)t−1

1 = µ(t2)t−1
2 then t1t

−1
2 ∈ Tµ. Indeed,

since T is abelian the equality µ(t1)t−1
1 = µ(t2)t−1

2 implies that t1t
−1
2 = µ(t1t

−1
2 ), i.e

t1t
−1
2 ∈ Tµ. �

The next proposition is the one we will use in the following sections.

Proposition 6.4. Let m be a prime number. Let H be a finite group containing a
normal subgroup G. Fix some h ∈ H and let n be the order of the automorphism
µ ∈ Aut(G) induced by conjugation by h. Let T be a maximal abelian subgroup of
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G preserved by µ and denote by c the number of elements of T of order dividing n.
Assume that:

1. m divides |Tµ|.
2. |Tµ,n| ≥ 3

4
|Tµ|.

Then, for N := NG(T )

|{xm | x ∈ Gh}| ≤
(

1− 1

4c[N : T ]

)
|G|.

Proof. Choose an element s ∈ Tµ of order m. If t ∈ T then (th)m = (tsh)m since T
is abelian and h commute with s. Condition 2 implies that the number of elements
t ∈ Tµ,n such that ts ∈ Tµ,n is at least 1

2
|Tµ|. This shows that we can choose a set

A ⊆ Tµ,n such that:

• The size of A is at least 1
4
|Tµ|.

• The set B := {as | a ∈ A} is contained in Tµ,n.
• A ∩B = ∅.

Choose a set of representatives R for G/L where L is defined in Lemma 6.3. If
t1, t2 ∈ A ∪ B and r1, r2 ∈ R satisfies r1t1µ(r−1

1 ) = r2t2µ(r−1
2 ) then t1 = t2 and

r1 = r2. The equality rthr−1 = rtµ(r−1)h for t ∈ T and r ∈ R implies that

|{rthr−1 | t ∈ A ∪B ∧ r ∈ R}| = 2|A||R|
while

|{(rthr−1)m | x ∈ A ∪B ∧ r ∈ R}| = |{(rthr−1)m | t ∈ A ∧ r ∈ R}| ≤ |A||R|.
Lemma 6.3 assures that |R||A| ≥ 1

4c[N :T ]
|G| so

|{xm | x ∈ Gh}| ≤ |G| − |A||R| ≤
(

1− 1

4c[N : T ]

)
|G|.

�

6.3. Chevalley groups. In this subsection we briefly describe the Chevalley groups
and their basic properties. More details and proofs can be found in the classical book
of Carter [Ca].

Let Φ ⊆ Rl be an indecomposable root system and fix a fundamental system of
roots Π ⊆ Φ. Let L be the simple Lie algebra over C associated with Φ. We regard
Φ as a subset of L and for every r ∈ Φ we define hr := 2r

(r,r)
where (·, ·) is the usual

scalar product of Rl. Finally we fix a Chevalley basis {hr | r ∈ Π} ∪ {er | r ∈ Φ} of
L. The multiplication of L satisfies:

1. [hrhs] = 0.
2. [hres] = (hr, s)es.
3. [eres] = hr if r + s = 0.
4. [eres] ∈ Zes+r if r + s ∈ Φ.
5. [eres] = 0 if r + s 6∈ Φ ∪ {0}.



SIEVE METHODS IN GROUP THEORY I: POWERS IN LINEAR GROUPS 23

In particular, the product of every two elements of the Chevalley basis is a linear
combination with rational integer coefficient of the basis elements. Thus, there is a
Lie algebra Lq over Fq with the same basis as L and a similar multiplication. The
coefficients of the product of elements of the basis in Lq are equal modulo p to the
ones of the product in L.

The rules of the multiplication also show that for every r ∈ Φ the linear map
ad er : L → L is nilpotent and so exp(t ad er) is an automorphism of L for every
t ∈ C. It turns out that exp(t ad er) is in fact is a finite power series of the form∑

0≤k≤n

ak(tad er)
k

where ak ∈ Z for 0 ≤ k ≤ n. Hence, this power series can be evaluated also for
t ∈ Fq and the result is an automorphism of Lq denoted by xr,t. The Chevalley group
Gq associated to Φ is the subgroup of the automorphism group of Lq generated by
the xr,t for r ∈ Φ and t ∈ Fq.

In the next few paragraphs we will define certain subgroups of Gq. In order to
keep the notations simple we will not insert the letter q in the symbols of these
subgroup but the reader should always remember that these groups depends on the
group Gq which in turn depend on q and the root system Φ.

For every root r ∈ Φ and an element t ∈ F∗q there is an element dr,t ∈ Gq which

satisfies dr,t(es) = t(hr,s)es and dr,t(hs) = hs for every s ∈ Φ. The diagonal subgroup
T is the group generated by the these elements. The group T is a maximal abelian
subgroup and, as the notation suggest, it will play the roll of the maximal abelian
subgroup of the first section. As before, for an n ∈ N denote Tn := {t ∈ T |
ZGq(t

n) = T}. Our first goal is to find a sufficient condition for an element of T to
belong to Tn.

Every root s ∈ Φ can be written in a unique way as s = εs
∑

r∈Π ns,rr where
ε = ±1 and the nr’s are natural numbers. The set of positive roots Φ+ contains
the roots s with es = 1 and the set of negative roots Φ− contains the roots s with
es = −1. The height of a root s is defined to be ε

∑
r∈Π ns,r. Let L+

q (L−q ) be the
subspace of L which is generated by the elements er where r runs over the positive
(negative) roots and let L0

q the subspace generated by the hr, with r ∈ Π.
The upper unipotent subgroup U of Gq is the group generated by the elements

xr,t for r ∈ Φ+ and t ∈ Fq. Similarly, the lower unipotent subgroup V of Gq is the
group generated by the elements xr,t for r ∈ Φ− and t ∈ Fq.Our first lemma is rater
technical.

Lemma 6.5. If u ∈ U preserves L0
q then u is the identity.

Proof. Let u ∈ U be a non-identity element. Fix an ordering � of the roots such
that r � s implies that the height of r is greater or equal to the height of s. There
are unique tr ∈ Fq such that

u =
∏
r∈Φ+

xr,tr
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where the product in taken in an increasing order of the roots. Let r∗ ∈ Φ+ be the
minimal root with respect to � such that tr∗ 6= 0. The definition of xr,t for r ∈ Φ+

and t ∈ Fq implies that for s ∈ Φ:

1. xr,t(hs) = hs − tr∗(hs, r)er.
2. xr,t(es) = es + v where v is a linear combination of roots with height greater

then the height of s.

Thus, u(hr∗) = hr∗ − 2tr∗er∗ + v where v is a linear combination of roots which are
greater than r∗ (0 6= 2(mod p) since p ≥ 5). �

The last ingredient needed for the proof of Lemma 6.6 is the Bruhat decompo-
sition. The diagonal group T normalize U and so B := TU is a subgroup of Gq.
Let N be the normalizer of T in G, N is called the monomial group. Every n ∈ N
acts as a permutation on the set {Cer | r ∈ Φ}. This action defines an epimor-
phism of N onto to Weyl group W (Φ) with kernel T . For every w ∈ W (Φ) choose
a representative nw ∈ N . The Bruhat decomposition says that

Gq =
⋃

w∈W (Φ)

BnwB

where the union is disjoint.

Lemma 6.6. Assume that d ∈ T satisfies:

1. If r ∈ Φ then d(er) = λrer where λr 6= 1.
2. If λr = λs then r, s ∈ Φ+ or r, s ∈ Φ−.

Then T is the centralizer of d.

Proof. Note that L0
q is exactly the eigen space of d with eigenvalue 1. Assume g ∈ Gq

centralizes d. Conditions 1 and 2 imply that g preserves L+
q . Choose b1, b2 ∈ B and

w ∈ W (Φ) such that g = b1nwb2. The element nw = b−1
1 gb−1

2 also preserves L+
q since

B does. Thus, w(Φ+) = Φ+ since nw(Cer) = Cew(r) for every r ∈ Φ. The identity is
the only element of the Weyl group which preserve Φ+ so w = id and g ∈ B. Write
g = cu with c ∈ T and u ∈ U . Since c centralizes d also u centralizes it. Condition
1 shows that u preserves L0

q and so u = id by Lemma 6.5. �

Corollary 6.7. Let n ∈ N. Assume that d ∈ T satisfies:

1. If r ∈ Φ then d(er) = λrer where λnr 6= 1.
2. If λnr = λns then r, s ∈ Φ+ or r, s ∈ Φ−.

Then d ∈ Tn.

Now that we have a sufficient criterion for an element to belong to Tn we want to
show that a high proportion of the element of T belongs to Tn.

6.4. Automorphisms of Chevalley groups. The chevalley group Gq has trivial
center so it is isomorphic to the inner automorphism group and we shell identify
these two groups. In general, Gq has a non-inner automorphisms which we shell
now describe.



SIEVE METHODS IN GROUP THEORY I: POWERS IN LINEAR GROUPS 25

Let T̂ ⊆ Aut(Lq) be the group consisting of automorphisms which have the el-
ements of the Chevalley basis as eigenvectors and act as the identity on L0

q. The

group T̂ is abelian, has exponent q−1 and contains T . In addition, T̂ normalizes Gq,
so conjugation by its elements induces automorphisms of Gq. The automorphisms
which are induced in this way are called diagonal automorphisms.

The second set of automorphisms are the graph automorphisms. These automor-
phisms arise from symmetry of the Dynkin diagram of Π. Since p is a prime greater
than 3, the only Chevalley groups which have a non-identity graph automorphism
are of type Al for l ≥ 2, Dl for l ≥ 4 and E6. We consider each case separately.

Type Al with l ≥ 2: In this case there is only one non-identity symmetry of the
graph. The symmetry sends ri to rl−i for 1 ≤ i ≤ l. The graph automorphism αl
associated with this symmetry has order 2, it preserves T and it satisfies αl(dri,t) =
drl−i,t for 1 ≤ i ≤ l and t ∈ F∗q.

d d d dr1 r2 rl−1 rl

Figure 1. Dynkin diagram of type Al.

Type D4: For every σ ∈ Sym{1, 2, 3, 4} with σ(1) = 1, there is a graph symmetry
which transform ri to rσ(i). The graph automorphism δσ associated with this sym-
metry has the same order as σ, it preserves T and it satisfies δσ(dri,t) = drσ(i),t for
1 ≤ i ≤ 4 and t ∈ F∗q.

d
d

dd b
bb"

""

r1

r2

r3r4

Figure 2. Dynkin diagram of type D4.

Type Dl with l ≥ 5: In this case there is only one non-identity symmetry of the
graph. The symmetry switches between rl−1 and rl and leaves the other fundamental
roots fixed. The graph automorphism δl associated with this symmetry has order 2,
it preserves T and it satisfies δl(dri,t) = dri,t, δl(drl−1,t) = drl,t and δl(drl,t) = drl−1,t

for 1 ≤ i ≤ l − 2 and t ∈ F∗q.
Type E6: Also in this case case there is only one non-identity symmetry of the

graph. The symmetry sends ri to r5−i for 1 ≤ i ≤ 5 and leaves r6 fixed. The graph
automorphism ε associated with this symmetry has order 2, it preserves T and it
satisfies ε(dr1,t) = dr5,t, ε(dr2,t) = dr4,t, ε(dr3,t) = dr3,t and ε(dr6,t) = dr6,t for every
t ∈ F∗q.
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d d d d
d��

bb

rl−2
rl−1

rl

r1 r2

Figure 3. Dynkin diagram of type Dl.

d d d d d
d

r1 r2 r3 r4 r5

r6

Figure 4. Dynkin diagram of type E6.

The last set of automorphisms are the field automorphisms. Every ϕ ∈ Aut(Fq)
induces an automorphism ϕ̄ ∈ Aut(Gq), which is called a field automorphism, such
that ϕ̄(xr,t) := xr,ϕ(t) and ϕ̄(dr,t) = dr,ϕ(t) for every r ∈ Φ and t ∈ Fq.

Lemma 6.8. Let r1, · · · , rl be the fundamental roots of Φ. Denote dt := dr1,t · · · drl,t
for every t ∈ F∗q. The set D := {dt | t ∈ F ∗p } is a subgroup of Gq which is pointwise
fixed by every diagonal, graph or field automorphism. Furthermore, the size of D is
p− 1.

Proof. All the assertion follows directly from the definitions expect the one about
the size of D. If s ∈ Φ then dt(es) = tmses where ms := (hr1 +· · ·+hrl , s). Inspection
of the Dynkin diagrams of all root systems of rank l shows that there is always a
fundamental root s such that ms := (hr1 + · · · + hrl , s) = −1 so dt(s) = t−1. This
implies the |D| = p− 1. �

Lemma 6.9. Fix n ∈ N+ and α ∈ (0, 1) and define D as in the above lemma.
There exists a constant c such that if p ≥ c and H is a subgroup of Gq such that
D ⊆ H ⊆ T then |Hn| ≥ α|H| where Hn := {h ∈ H | ZGq(hn) = T}.

Proof. Let r1, · · · , rl be the fundamental roots of Φ and dt as in the above lemma.
It suffices to show that if p is large enough that for every h ∈ H the number of
t ∈ (F∗p) such that hdt ∈ Hn is at least α(p−1). Fix h ∈ H and assume h(es) = λses
for every s ∈ Φ. If s ∈ Φ then

hdt(es) = λst
mses

where ms := (hr1 + · · ·+hrl , s). Denote m := max |ms| where the maximum is taken
over s ∈ Φ. Lemma 6.6 shows then if t ∈ F∗p then hdt ∈ Hn whenever the following
two conditions hold:

1. For every s ∈ Φ the product λns t
nms is different from 1.

2. If s1 ∈ Φ+ and s2 ∈ Φ− then λns1t
nms1 6= λns2t

nms2 .
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If s ∈ Φ+ (s ∈ Φ−) then s is a linear sum of elements of Π where all the coefficients
in this sum are non-negative (non-positive). In addition, the scalar product of any
two distinct fundamental roots is non-positive and s can not be orthogonal to all
the fundamental roots. Hence, if s ∈ Φ+ then ms < 0 while if s ∈ Φ− then ms > 0.
Thus, for s ∈ Φ the number of t ∈ F∗p which does not satisfy condition 1 is at most
nm. Similarly, for s1 ∈ Φ+ and s2 ∈ Φ− the number of t ∈ F∗p which does not satisfy
condition 2 is at most 2nm. Therefore, the number of t ∈ F∗p with hdt ∈ Hn is at
least

(p− 1)− nm|Φ| − nm

2
|Φ|2

which is greater than α(p− 1) for large enough p. �

The following is a first step to verify condition 2 of Proposition 6.4.

Corollary 6.10. Let n ∈ N+ and α ∈ (0, 1). There exists a constant w such that
for every p ≥ w and every µ ∈ Aut(Gq) the following holds:

If µ stabilizes T and pointwise fixes D then |Tµ,n| ≥ α|Tµ|. In particular, this it
true for µ which is a product of field, graph and diagonal automorphisms

We close this subsection with a further discussion about automorphisms. As
before let p be a prime number greater than 3 and let q := pk for k ∈ N+. The
group Gq is simple and we regard it as a normal subgroup of its automorphism
group. Every automorphism of Gq is a product of the form ϕηκι where ι is an
inner automorphism, κ is a diagonal automorphism, η a graph automorphism and
ϕ is a field automorphism. In Subsection 6.6 we will need a bound on the order
of ϕηκ so we investigate this product. Graph and field automorphisms commute
and both normalize the group of diagonal automorphisms T̂q. Hence, the order of
ϕηκ is bounded by the product ord(ϕ) ord(η) ord(κ) since the group of diagonal

automorphisms T̂ is abelian. Thus, it is enough to bound the order of ϕ, η and κ
separately. The order of a graph automorphism is at most 3 while the order of a field
automorphism of Gq divides k (since q = pk). However, a diagonal automorphisms
can have arbitrary large orders if p is large. To overcome this problem we note that
T ⊆ T̂ so in the presentation of an automorphism as a product ϕηκι the diagonal
automorphism κ can be replaced by others automorphisms of the coset κT . We need
the following group theoretic lemma:

Lemma 6.11. Let G be a finite group which contains a normal subgroup H. Then
every coset of H is G has a representative g such that every prime divisor of ord(g)
also divides [G : H].

Proof. If p is a prime which does not divide [G : H] and q is a power of p then the
set R := {gq | g ∈ G} contains a representative of each coset. If in addition q is
large enough then p does not divide the order of any one of the elements of R. �
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The index [T̂ : T ] depends on the type of the root system and the field Fq and it
is as follows:

Al Bl Cl Dl G2 F4 E6 E7 E8

gcd(l + 1, q − 1) 2 2 (4, ql − 1) 1 1 gcd(3, q − 1) 2 1

Lemma 6.12. Let k ∈ N+ such that q := pk. If ξ ∈ Aut(Gq) then there are: a
field automorphism ϕ , a graph automorphism η, a diagonal automorphism κ and
an inner automorphism ι such that ξ := ϕηκι and the order of µ := ϕηκ divides 6kz
where z divides q − 1 and every prime factor of z divides 6(l + 1).

Proof. The above discussion implies that it is enough to show that ξ can be written
in the form ξ = ηϕκι such that z := ord(κ) satisfies the required properties. The

order of the elements of T̂ divides q−1 and Lemma 6.11 shows that κ can be chosen
such that the prime factors of its order divide [T̂ : T ]. The above table shows that

the primes which divide [T̂ : T ] also divide 6(l + 1). �

The point of the Lemma 6.12 is that for a given r ∈ N+ there is a suitable
arithmetic progression (a + bj)j∈N with coprime a and b such that if q = pk where
k ≤ r and p is a prime which belongs to the arithmetic progression then the product
ϕηκ has bounded order.

6.5. Steinberg groups. Assume that Φ has a non trivial symmetry of the Dynkin
diagram, i.e, Φ is of one of the type: Al for l ≥ 2, Dl ≥ 4 or E6. Let α ∈ Aut(Gq)
be the graph automorphism associated to such a symmetry, then ord(α) = 2 unless
Φ is of type D4 where it is also possible that ord(α) = 3. Assume q = pk where
k ∈ N+ is divisible by ord(α) and let β be a field automorphism with the same order
as α (recall that the automorphism group of Fpr is cyclic of order r). Let Uγ(Vγ) be
the subgroup of the unipotent group U (V ) of the elements fixed by γ := αβ. The
Steinberg group G∗q of type Φ over Fq is the subgroup of Gq generated by Uγ and Vγ.
The group G∗q is fixed by γ but it can be properly contained in the subgroup of fixed
points. Note that for p ≥ 5 the Steinberg groups are only defined when the root
system is of type Al for l ≥ 2, Dl ≥ 4 or E6 and there is a field automorphism of
Fq of the same order as a non-trivial graph automorphism. If Φ is of type different
than D4, then there is just one non-trivial graph automorphism and its order is 2, so
G∗q is uniquely defined and q is a square. On the other hand, if the type is D4 then
there are 3 non-trivial graph automorphisms of order 2 and 2 graph automorphisms
of order 3. However, it is easily verified that up to isomorphism the Steinberg group
depends only on the order of the graph automorphism. Thus, if 6 divide k and
q = pk the symbol G∗q can represent two different Steinberg groups. This will not
cause us problems since both groups share the properties we are concerned with.

A common notation for the Steinberg groups is 2Al(q
2), 2Dl(q

2), 3D4(q3) and
2E6(q2) where for instance 3D4(q3) is the Steinberg group corresponding to the
graph automorphism of order 3 of Gq3 . We prefer not to use this notation since our
arguments does not depend on the type of the root system. On the other hand, our
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arguments will depend on the fact that the Steinberg groups are subgroups of the
Chevalley groups and the symbol G∗q emphasis this.

Let G∗q be an Steinberg subgroup. Define T ∗ := T ∩G∗q and N∗ := N ∩G∗q where
T and N are the subgroup of Gq defined above. The proof of theorem 13.7.2 in [Ca]
shows that D is a subgroup of T ∗ where D is defined in Lemma 6.8. If p is large
enough then Corollary 6.10 shows that D contains an element whose centralizer is
T , so T ∗ is a maximal abelian subgroup of G∗q. In turn, Lemma 6.2 implies that
N∗ = NG∗

p
(T ∗). In particular, we have [NG∗

p
(T ∗) : T ∗] ≤ [N : T ] = |W (Φ)| where

W (Φ) is the Weyl group of Φ.
Next, we want to discuses the automorphisms of the Steinberg group G∗q (see [St]).

The group G∗q has a trivial center (since p ≥ 5) so we can view it as a subgroup of

its automorphism group. The group of diagonal automorphisms T̂ ∗ of G∗q consists of

the restrictions of the automorphisms which belong to T̂ and stabilize G∗q. Note that
diagonal automorphisms of G∗q fix T ∗ pointwise. The field automorphisms of G∗q are
the restrictions of the field automorphism of Gq, they also stabilize T ∗. Lemma 6.9
gives an analog of Corollary 6.10:

Corollary 6.13. Let n ∈ N+ and α ∈ (0, 1). There exists a constant c such that
for every p ≥ c and every µ∗ ∈ Aut(G∗q) the following holds:

If µ∗ stabilizes T ∗ and pointwise fixes D then |T ∗µ∗,n| ≥ α|T ∗µ∗|. In particular, this
is true for µ which is a product of field and diagonal automorphisms.

As for Chevalley groups, every automorphism of G∗q is a product of the form ϕκι
where ι is an inner automorphism, κ is a diagonal automorphism and ϕ is a field
automorphism (there in no need for graph automorphisms). Note that this fact
does not follow directly from the equivalent fact for Chevalley groups and requires
a sperate proof which can be found in [St]. The index of T ∗ in T̂ ∗ is given in the
following table:

2Al(q
2) 2Dl(q

2) 3D4(q3) 2E6(q2)
gcd(l + 1, q + 1) gcd(4, ql + 1) 1 (3, q + 1)

We get an analog of lemma 6.12:

Lemma 6.14. Let k ∈ N+ such that q = pk. If ξ ∈ Aut(G∗q), then there are: a field
automorphism ϕ , a diagonal automorphism κ and an inner automorphism ι such
that ξ := ϕκι and the order of µ∗ := ϕκ divides kz where z divides q − 1 and every
prime factor of z divides 6(l + 1).

With the notations as above, we conclude:

Corollary 6.15. Let d ∈ N+ and fix a prime number m. Assume that p is a large
enough prime which belongs to the series (a + bj)j∈N and q = pk for k ≤ d where
a := 1 + 6m(l + 1)2d!2 and b := 36m2(l + 1)4d!4. Then for every ξ ∈ Aut(Gq)
and every ξ∗ ∈ Aut(G∗q) there are ι ∈ Inn(Gq), ι∗ ∈ Inn(G∗q), µ ∈ Aut(Gq) and
µ∗ ∈ Aut(G∗q) such that:
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1. ξ = µι and ξ∗ = µ∗ι∗.
2. µ(T ) = T and µ∗(T ∗) = T ∗.
3. both µ and µ∗ pointwise fix D.
4. m divides the order of D.
5. ord(µ) and ord(µ∗) divides 216(l + 1)3d!4.

Proof. Fix ξ and ξ∗ and assume that q = pk for k ≤ d. Lemmas 6.12 and 6.14 show
that we can find ι ∈ Inn(Gq), ι

∗ ∈ Inn(G∗q), µ ∈ Aut(Gq) and µ∗ ∈ Aut(G∗q) such
that conditions 1,2,3 hold and the order of µ and µ∗ divide 6zk where z divides
q− 1 and every prime factor of z divides 6(l+ 1). The above arithmetic progression
implies that

q − 1 = pk − 1 ≡ 6mk(l + 1)2d!2 (mod 36m2(l + 1)4d!4).

Thus, z divides 6mk(l+ 1)2d!2 so it also divides 36(l+ 1)3d!3. It follows that ord(µ)
and ord(µ∗) divides 216(l + 1)3d!4. Finally, the size of D is p− 1 which is divisible
by m. �

6.6. Powers in extension of finite simple Lie groups. The main goal of this
section is to prove Theorem 6.16 below. We start this section with a general discus-
sion about powers in extension of finite groups. Let H be a finite group. Let G be
a normal subgroup of H with trivial center. Let K be a coset of G in H. Our goal
is to bound the size of {km | k ∈ K} for some m ∈ N+. Fix some k ∈ K and let
ζ ∈ Aut(G) be the automorphism induced by conjugation by k. Then

|{km | k ∈ K}| = |{(gζ)m | g ∈ G}|
where in the right side G is viewed as a subgroup of Aut(G) . Hence, we only have
deal with groups of the later form, i.e the case where H = Aut(G).

Next, we focus on the case G = Sr where S is a non-abelian finite simple group
and r ∈ N+. Every automorphism ζ of the direct product Sr is of the form:

(6) ζ(s1, · · · , sr) = (ξ1(sσ(1)), · · · , ξr(sσ(r)))

where ξ1, · · · , ξr ∈ Aut(S) and σ ∈ Sym(r). Every permutation is a product of
disjoint cycles ,say, σ is a product of k cycles of lengthes r1, · · · , rk. By renumbering
the copies of Sr and using the isomorphism Sr ' Sr1×· · ·×Srk we can assume that
there are ζi ∈ Aut(Sri) and ξi,j ∈ Aut(S) for 1 ≤ i ≤ k and 1 ≤ j ≤ ri such that

ζ(s̄1, · · · , s̄k) = (ζ1(s̄1), · · · , ζk(s̄k))
and

ζi(si,1, · · · , si,ri) = (ξi,1(si,σi(1)), · · · , ξi,ri(si,σi(ri)))
where s̄i = (si,1, · · · , si,ri) ∈ Sri and σi = (ri ri−1 · · · 2 1) ∈ Sym(ri). Note that if

|{(s̄1ζ1)m | s̄1 ∈ Sr1}| ≤ c|S|r1

for some constant c > 0 then also

|{(s̄ζ)m | s̄ ∈ Sr}| ≤ c|S|r.
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This allows us to restrict to the case where σ is a cyclic permutation.
Finally, let ζ ∈ Aut(Sr) as in equation 6 where σ is the permutation (r · · · 1).

Denote χ := (ρ1, ρ2, · · · , ρr) ∈ Aut(Sr) where ρj := ξj · · · ξ2 for j ≥ 2 and ρ1 := id.
Conjugation by χ allows us to replace ζ with χ−1ζχ, i.e. to assume that we have
ξ2 = · · · = ξr = id.

The main theorem of this section is:

Theorem 6.16. Let d, l.r ∈ N+ be constants. There is a constant c ∈ N+ such that
for every number m ≥ 2 the following claim holds:

Let p be a prime which belongs to the arithmetic progression (a+ bj)j≥c where

a := 1 + 6m(l + 1)2d!2 and b := 36m2(l + 1)4d!4.

Let Γ be a finite group with a non-trivial normal subgroup Λ. Furthermore, assume
that Λ is isomorphic to a product of at most r finite quasi simple groups of Lie type
(not necessarily of adjoint type) of rank at most l over extensions of Fp of degree at
most d. Then for every coset Ψ of Λ the following inequity holds:

|{gm | g ∈ Ψ}| ≤
(

1− 1

4nrCl
r

)
|Ψ|

where n := 216(l + 1)3d!4 and Cl is the maximal size of a Weil group of rank l.

Proof. We start with some reductions. The group Λ has a subgroup N normal in
Γ such that Λ/N is isomorphic to a product of isomorphic finite simple Lie groups
of adjoint type. We replace Λ with this quotient. We focus on the case where the
finite simple Lie group is an Steinberg group G∗q of type Φ over Fq with q := pd and
Λ = (G∗q)

r. The proofs of the other cases are similar. Furthermore, we can assume
that m is a prime number.

Define n = 216r(l + 1)3d!4. Corollary 6.13 allows us to choose a constant c such

that if p belongs to the above series then |Tµ∗,n| ≥ 3
4

1
r |Tµ∗| for every µ∗ ∈ Aut(G∗q)

which stabilizes T and pointwise fixes D. We can further assume that c is large
enough so that T ∗ is a maximal-abelian subgroup of G∗q and NGq∗ (T ∗) = N∗.

The discussion before the proof shows that it is enough to deal with the case
Γ = Aut(Λ) and Ψ = Λζ∗ where

ζ∗(s1, · · · , sr) = (ξ∗(sr), s1, · · · , sr−1)

for some ξ∗ ∈ Aut(G∗q). Corollary 6.15 allows us to replace ζ∗ with some represen-
tative of Λζ∗ such that the new representative, still denoted by ζ∗, stratifies

ζ∗(s1, · · · , sr) = (µ∗(sr), s1, · · · , sr−1)

where µ∗ ∈ Aut(G∗q) satisfies conditions 2, 3, 4 and 5 of that corollary. This implies
that the order of ζ∗ divides n.

We are in position to verify that the requirements of Proposition 6.4. The group
T̃ := (T ∗)r is a maximal-abelian subgroup of Λ and its normalizer is Ñ := NΛ(T̃ ) =
(N∗)r. In particular, [Ñ : T̃ ] ≤ |W (Φ)|r. Note that T̃ζ∗,ord(ζ∗) ⊇ T̃ζ∗,n since ord(ζ∗)
divides n. Thus,
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• |T̃ζ∗,ord(ζ∗)| ≥ 3
4
|T̃ζ∗| since T̃ζ∗ = (Tµ∗)r and T̃ζ∗,n = (T ∗µ∗,n)r.

• m divides the order of T̃ζ∗ since it contains the subgroup Dr and m divides
|D|.

Proposition 6.4 together with the last two points shows that

|{gm | g ∈ Ψ}| ≤
(

1− 1

4cn|W (Φ)|r

)
|Ψ|

where cn is the number of elements of T̃ such that their orders divide n. However,
T̃ = (T ∗)r ⊆ T r ⊆ T̂ r ' (F∗q)r where F∗q is the multiplicative group of Fq so
cn ≤ nr. �

The next Corollary is stated with the notations of Proposition 3.7.

Corollary 6.17. For n ≥ 2 every there is a constant c for which the following claim
holds:

Let Γ be a subgroup of GLn(Q) such that its Zariski-closure is semisimple. Let
k ∈ N+ be large enough and let 2 ≤ m ≤ k2. Then there are two coprime natural
numbers 2 ≤ a, b ≤ k5 such that for every prime p which belongs to the arithmetic
progression (a+bj)j≥1 and every two coset C,D ∈ Γp/Λp, the size of {gm | g ∈ D}∩C
is at most (1− c)|Λp|.
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